Seismic Energy: Scaling, Variability, and Implications for High Frequency Ground motion

Annemarie Baltay German Prieto Satoshi Ide Greg Beroza

STANFORD

School of Earth Sciences

3rd SCEC-ERI Joint Workshop Tuesday March 16th 2010, Tokyo, Japan

Radiated seismic energy

$$E_{s} = \frac{1}{4\pi^{2}\rho\beta^{5}} \int_{0}^{\infty} \left| \omega \cdot \dot{M(\omega)} \right|^{2} d\omega$$

Integrated source spectra over all frequencies

Most is radiated above corner frequency

Previous Studies: No scaling?

Ide and Beroza (2001)

Scaling?

Strongest evidence comes from coda studies.

Mayeda et al. (2000)

Takahashi et al. (2005)

Sequence Locations

CalTech, Berkeley, Anza networks

Empirical Green's Function Approach

1) Narrowband Envelopes

160

Lapse Time (s)

200

- Band pass filter in 20 narrowbands
 - Continuous in time
 - → Discrete in frequency
- Take envelope

$$E(t) = \sqrt{u(t)^2 + H(t)^2}$$

 Window from S arrival to window length, set by smallest event

2) Create Coda Spectra

Empirical Green's Function

3) Sequentially remove path effects

Tie amplitudes to moment

4) Velocity Spectra

Ideal Cumulative Energy

Cumulative Energy – US Events

Cumulative Energy – Japan Events

No Distance Bias

→ Validates empirical Green's function approach

Cerro Prieto Sequence

Scaled Energy: Japan Earthquake Sequences

Scaled Energy: US Earthquake Sequences

No scaling of radiated energy

Anomalous events

Anomalous vs. Normal Event

Low Energy Earthquake

High Energy Earthquake

Scatter in apparent stress is real

USGS-NEIC: Mw vs. ME

Conclusions

Iwate-Miyagi $E_s/M_o \sim M_o^{0.038} + / \cdot 0.12$ Hector Mine $E_s/M_o \sim M_o^{0.091} + / \cdot 0.08$ Kamaishi $E_s/M_o \sim M_o^{0.078} + / \cdot 0.17$ Parkfield $E_s/M_o \sim M_o^{0.001} + / \cdot 0.09$ Chuetsu 2004 $E_s/M_o \sim M_o^{0.024} + / \cdot 0.14$ Cerro Prieto $E_s/M_o \sim M_o^{0.016} + / \cdot 0.09$ Chuetsu Oki 2007 $E_s/M_o \sim M_o^{0.024} + / \cdot 0.26$ Wells $E_s/M_o \sim M_o^{0.022} + / \cdot 0.10$

Thank you