

Recurrence of Kanto Earthquakes Revealed

from Tsunami Deposits in Miura peninsula

Kunihiko Shimazaki^{1,2}, Kenji Satake^{1*}, Haeng Yoong Kim¹, Takeo Ishibe¹, Takashi Chiba³ & Toshihiko Sugai³

 ¹Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan;
²Association for Earthquake Disaster Prevention, 5-26-20 Shiba, Minatoku, Tokyo 108-8414, Japan;
³Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan;

*Author for correspondence, e-mail: satake@eri.u-tokyo.ac.jp

The 1923 Kanto earthquake

Damage in Yokohama City © Yokohama City Library Tsunami Damage in Ito City © Ito City Office

Total casualty ~ 100,000 (The worst earthquake disaster in Japan)

The 1923 (Taisho) Kanto earthquake

Tsunami Heights

Crustal deformation

Miyabe (1931)

Hatori (1975)

The 1703 (Genroku) Kanto earthquake

Previous earthquake at the plate boundary

Tsunami Heights

Crustal deformation

Larger tsunami on the Pacific coast of Boso peninsula Larger uplift on the southern tip of Boso Peninsula

Historical records of earthquakes

Ueda and Usami (1990)

Historical records of earthquakes

During Kamakura Era (1192-1333), several damaging earthquakes were recorded, e.g.,

AD1257 M=7-7.5 AD1293 M~7 AD1433 M>7

Geomorphological study

Fig. 10. Schematic cross-section of geology and geomorphology in the Iwai Lowland. 1: terrestrial deposit, 2: aeolian deposit, 3: beach ridge deposit, 4: backshore deposit, 5: foreshore deposit, 6: shoreface deposit, 7: marine clay, 8: bedrock, 9: location of radiocarbon sample (number means cal yrs BP), 10: location of archaeological site. Modified from Shishikura et al. (2001).

Study Site: Koaijiro Bay

Koajiro Bay

Tidal Flat

Tide Gauge Station

Aburatsubo Bay

Image © 2009 DigitalClobe Image © 2009 Digital Earth Tochnology

17 1-

ithuilli

Array Coring using Geoslicer at Tidal Flat

Array Coring using Geoslicer at Tidal Flat

Sequence of Stratigraphy

Three event deposits in the bay sediment beneath tidal flat sediment

Tsunami Deposits

Grain Size Analysis

• Event Units composed of the coarse materials.

Diatom analysis

Gradual (interseismic) subsidence and Sudden (coseismic) uplift

Study Site: Koaijiro Bay

Dating of most recent event (Cs, Pb)

Older earthquake

A.D. (year) 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

T3 may correlate with 1293 Sho'o earthquake

Long Geoslicer Survey

Long Geoslicer Survey

Long Geoslicer Survey

Balanus 710+-30yBP (1560-1820 AD) ~ 1703 (Genroku) Kanto Eq.

Shell in sand layer

1230-1400AD (Marine Reservoir correction applied)

~ 1293 Kanto Eq.

Geoslicer survey in Ena Bay

Characteristics of Tsunami deposits in Ena Bay

- Three or four coarse layers including shell fragments, gravels, and coarse sand were identified in the inner bay fine sediments.
- These tsunami deposits erode layers below, indicating a strong current.
- Sedimentation environment clearly changes between below and above the tsunami deposits.

Diatom and grain size analyses

Planktonic > Benthic diatom : interseismic subsidence Planktonic < Benthic diatom : coseismic uplift

Radiocarbon Dating

Radiocarbon Dating and Sedimentation Rate

Comparison with Geomorphological study

Fig. 10. Schematic cross-section of geology and geomorphology in the Iwai Lowland. 1: terrestrial deposit, 2: aeolian deposit, 3: beach ridge deposit, 4: backshore deposit, 5: foreshore deposit, 6: shoreface deposit, 7: marine clay, 8: bedrock, 9: location of radiocarbon sample (number means cal yrs BP), 10: location of archaeological site. Modified from Shishikura et al. (2001).

Summary

- Three or four tsunami deposits are obtained in the inner bay fine sediment.
- In Koajiro Bay, the top and second tsunami deposits are correlated to the 1923 and 1703 Kanto earthquake. The third one may be 1293 earthquake recorded in historical literature.
- In Ena Bay, the topmost deposit is the 1923 Kanto earthquake. The second through fourth unit deposited about 3000, 3300 and 3700 year BP, respectively.
- In addition to tsunami deposits, diatom analysis provide coseismic and interseismic sea level changes.