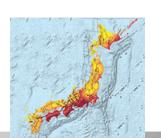
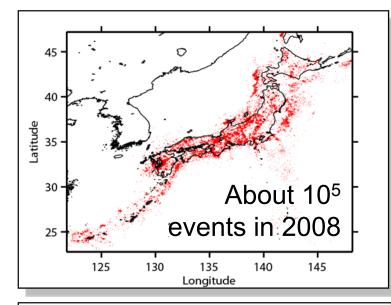

The 3rd SCEC-ERI joint workshop, 16-17 March 2010

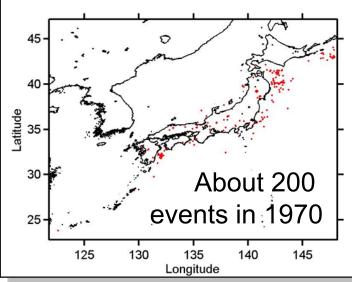

Completeness Study for the JMA Catalog:

A Baseline for Rigorous Tests of Earthquake Forecasts for Japan

K. Z. Nanjo¹, T. Ishibe¹, H. Tsuruoka¹, D. Schorlemmer², N. Hirata¹,

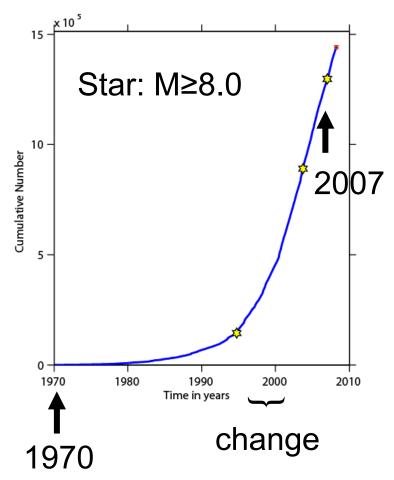
Y. Ishigaki³ (¹ERI, ²SCEC, ³JMA)





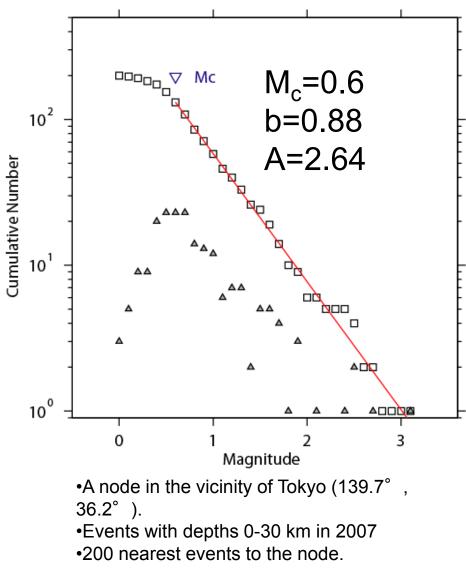
Catalog

- Catalog maintained by JMA
 - Cover all over Japan
 - 10⁵ events / year since 2000
- Seismic networks
 - Currently, about 1200 seismic stations
 - Gradual change
 - Significant change during 1998-2002
 - JMA started in October 1997 real-time processing of waveform data from many other networks operated by Japanese universities and institutions
 - Among them is Hi-net, a borehole seismic network of the National Research Institute for Earth Science and Disaster Prevention (NIED)



Catalog

- Catalog maintained by JMA
 - Cover all over Japan
 - 10⁵ events / year since 2000
- Seismic networks
 - Currently, about 1200 seismic stations
 - Gradual change
 - Significant change during 1998-2002
 - JMA started in October 1997 real-time processing of waveform data from many other networks operated by Japanese universities and institutions
 - Among them is Hi-net, a borehole seismic network of the National Research Institute for Earth Science and Disaster Prevention (NIED)



Completeness magnitude *M*_c

- Quality benchmark of the JMA catalog
 - M_C: completeness magnitude
 - Magnitude, above which all events are considered to be detected by a seismic network
 - GR-based method to obtain Mc
 - Entire-magnitude-range (EMR) method (Woessner & Wiemer, 2005)

Why completeness magnitude?

1. Completeness magnitude

- Magnitude of the smallest events completely detected by the network
- 2. Wrong completeness estimate affects
 - Basic seismic parameters (b-value, seismicity rate)
 - Hazard
- 3. Microseismicity has information on forecasting future large events
 - ETAS, PI, RI, ALM models and so on

Essential starting point for seismicity-related study

First application of Mc to Japanese catalog

- Wiemer & Wyss
 (2000)
 - Application of a GR-based method to Japan University Network Catalog (JUNEC) for the period of 1986–1990
 - JUNEC was created based on merging earthquake data detected by the networks of individual Japanese

Note

- Data after 1998 are not added to JUNEC anymore
- Completely different from the catalog maintained by JMA

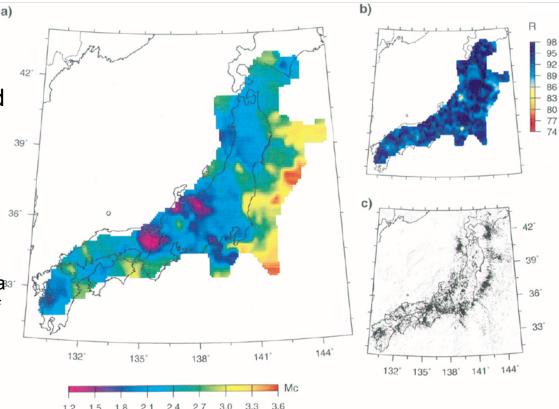


Figure 6. (a) Map of Japan. Color-coded is the minimum magnitude of completeness, M_c estimated from the nearest 250 earthquakes to nodes of a grid spaced 10 km apart. The typical sampling radii are r = 62 km, and all r < 150 km. (b) Map of the local goodness of fit of a straight line to the observed frequency-magnitude relation as measured by the parameter R in percent of the data modeled correctly. (c) Epicenters of earthquakes in Japan for the period 1986–1992 and depth < 35 km.

Completeness map for 2008

- Schorlemmer et al. (2008)
 - Probability-based Magnitude of completeness (PMC) method
 - PMC derives completeness from the observed recording capabilities of each station within a seismic network
 - Applied PMC to Japanese network for 1 Apr. 2008
- Challenge
 - It requires detailed knowledge about the network and its setup, and also needs more computational resources.

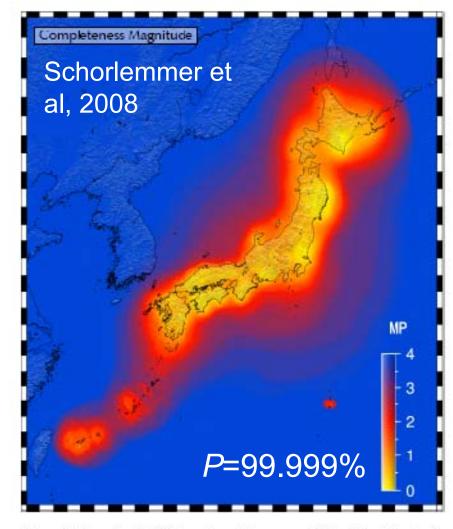
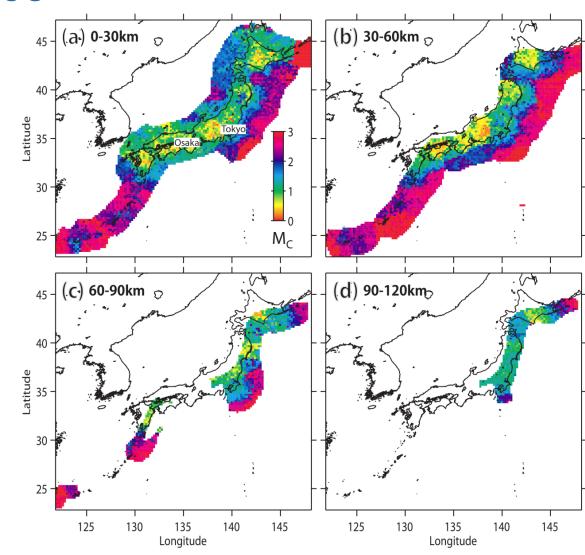
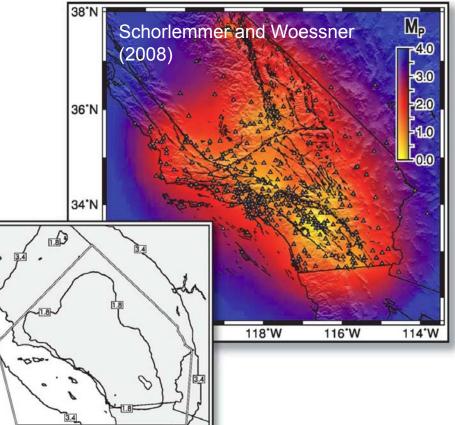



Figure 6: Map of probability-based completeness magnitude. MP, at the depth layer of 30km, computed for 1 April 2008

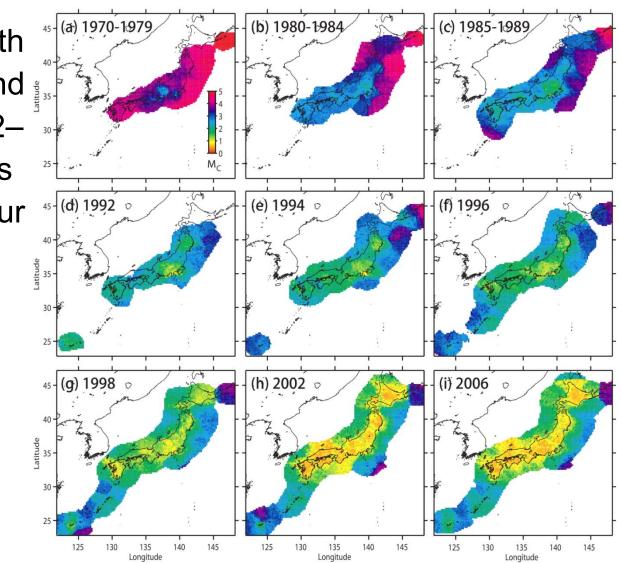
M_c maps for 2008

- Mainland:
 - Typically, $M_{\rm C}$ is 1
 - Min. 0.1 and max. 1.9
- Offshore:
 - Higher M_C
- Depth~100km: M_C
 can reach 1



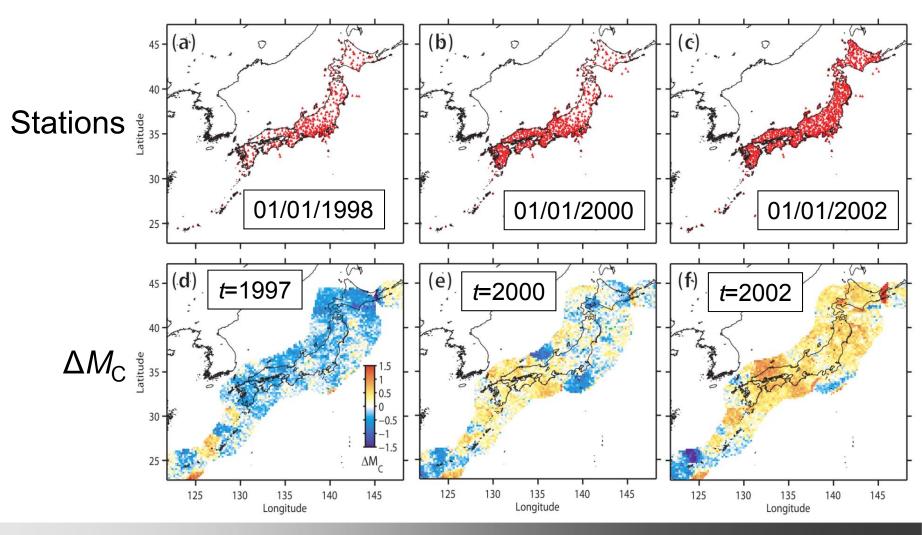
Comparison between CA and Japan's mainland

- Eqs. used to convert from $M_{\rm JMA}$ to $M_{\rm L}$
 - JMA (2003): $M_{\text{JMA}}^{\text{C}} \rightarrow M_{\text{JMA}}^{\text{P}}$
 - Iio (1986): $M_{\text{JMA}}^{\text{P}} \rightarrow M_{\text{o}}$
 - Pepin and Bufe (1980): $M_{o} \rightarrow M_{L}$
- Conversion
 - Typical $M_c = 1 \rightarrow M_L = 1.42$
 - Min $M_c=0.1 \rightarrow M_L=0.24$
 - Max $M_c=1.9 \rightarrow M_L=2.42$
- PMC application to SCSN
 - Min completeness <0.5
 - Max completeness =3.4



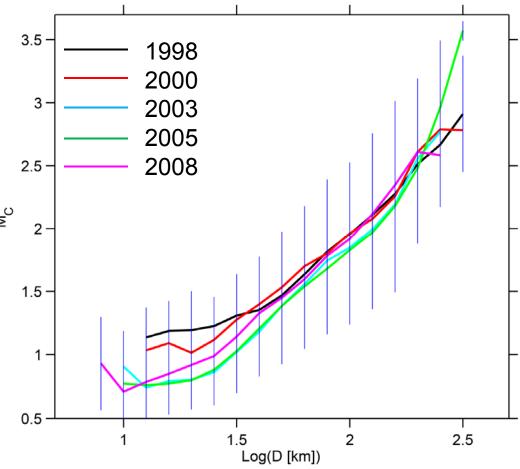
Network modernization

*M*_C decreases with time in and around Japan by about 2–
 3 magnitude units during the last four decades



Contribution of Hi-net to *M*_c

- $\Delta M_{\rm C} \equiv M_{\rm C}(1998) - M_{\rm C}(t)$

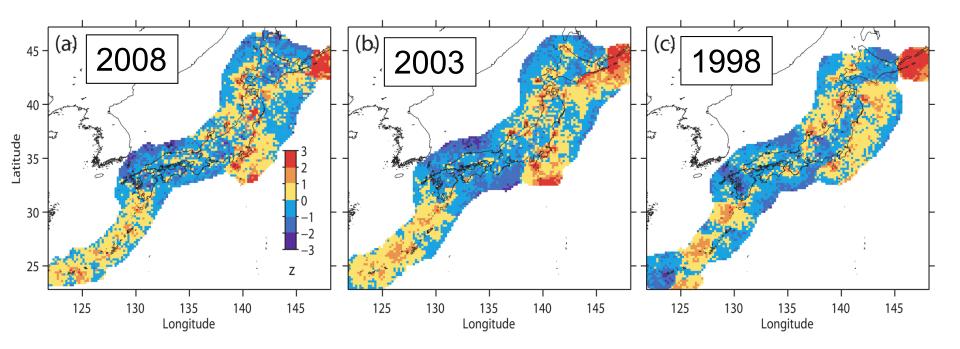


M_C versus local station density

Local density

- The minimum number of stations triggered that are required for initiating the location procedure is 4 for the JMA triggering algorithm.
- The distance, *D*, of the 4th nearest station to a node is an approximate measure of the local density of stations.
- Plot mean (M_{CA}) with error bar (σ: standard deviation) as a function of log *D* for each year

Significance of ambient noise on $M_{\rm C}$?


- Wiemer and Wyss (2000) for CA and Alaska:
 - $M_{\rm C}$ in highly populated area is higher because of the higher noise level, which is particularly pronounced in the case of small $M_{\rm C}$.
- $z \equiv (M_{\rm C} M_{\rm CA})/\sigma$
 - *z* indicates how many standard deviations (σ) an observation ($M_{\rm C}$) is above or below the mean ($M_{\rm CA}$)
 - A negative *z*-value indicates better detectability than the average.
 - Positive *z*-values would be in highly populated areas following Wiemer and Wyss.
 - At each node, M_{CA} and σ are given from D, using the relation shown in the figure $\rightarrow z$ can be obtained.

Insignificant effect on M_C

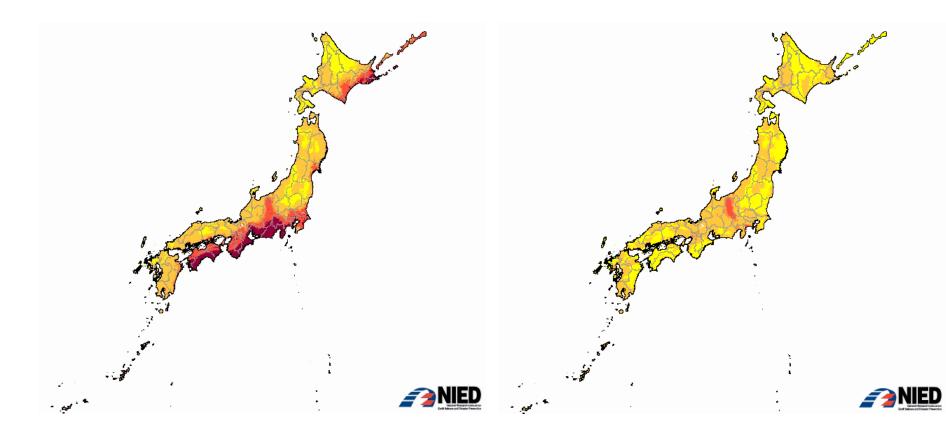
- Cannot relate the spatial variability of *z* to big cities, such as Tokyo and Osaka, where anthropogenic noise should be highest.
- Influencing factors beyond seismic density are more complex
- Anthropogenic noise has insignificant effect on $M_{\rm C}$.

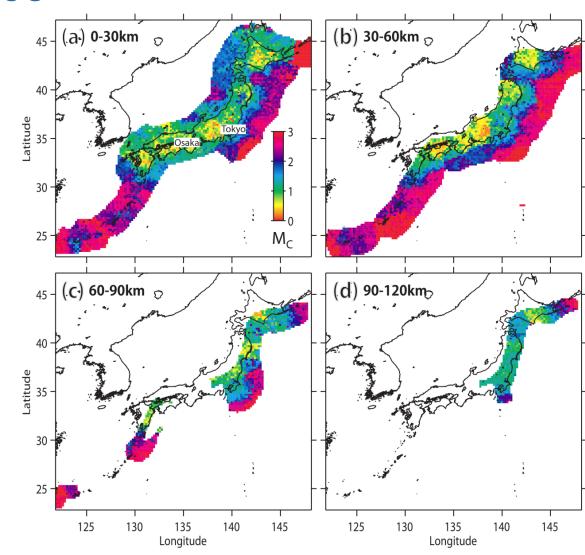
Why?

 NIED constructed boreholes for Hi-net seismic observatories to eliminate ambient noise: some boreholes around big cities reach depths greater than 2000 m [Obara et al., 2005].

Summary

- Spatial variability of M_C
 - Typical $M_{\rm C}$ for the mainland is currently 1.0 with min. 0.1 and max 1.9.
 - Higher values in offshore regions
- Similar completeness levels to that in the authoritative region of SCSN.
- Current completeness for Japan is due to the success of network modernization over time.
- Contrary to Alaska and California, anthropogenic noise in Japan has insignificant effect on M_C.
- Nanjo et al. (2010) Completeness magnitude and seismic network coverage for Japan, submitted to GRL.




National Seismic Hazard Maps by Hdqs. Earthq. Res. Prom.

M_c maps for 2008

- Mainland:
 - Typically, $M_{\rm C}$ is 1
 - Min. 0.1 and max. 1.9
- Offshore:
 - Higher M_C
- Depth~100km: M_C
 can reach 1

