back
査読論文
  1. Kobayashi, H., Koketsu, K., Miyake, H., and Kanamori, H. (2021). Similarities and differences in the rupture processes of the 1952 and 2003 Tokachi‐oki earthquakes, Journal of Geophysical Research: Solid Earth, 126, e2020JB020585, https://doi.org/10.1029/2020JB020585 link

  2. Tran, M. T., V. Vi, H. Miyake, K. Irikura, and D. Bui (2020). Empirical Green's function simulations toward site-specific ground motion prediction in Vietnam, Pure Appl. Geophys., 177, 2281-2298, https://doi.org/10.1007/s00024-020-02491-3 link

  3. Houshmandviki, A., H. Hamzehloo, H. Miyake, and A. Ansari (2020). Estimation of strong motion generation area for the 2004 Parkfield earthquake using empirical Green's function method, Pure Appl. Geophys., 177, 2241-2254, https://doi.org/10.1007/s00024-019-02327-9 link

  4. Tanircan, G., H. Miyake, H. Yamanaka, and O. Ozel (2020). Large stress release during normal-faulting earthquakes in western Turkey supported by broadband ground motion simulations, Pure Appl. Geophys., 177, 1969-1981, https://doi.org/10.1007/s00024-019-02357-3 link

  5. 引田智樹・纐纈一起・三宅弘恵 (2020). 震源特性の偶然的不確かさに起因する地震動シミュレーションのばらつきに関する検討, 日本地震工学会論文集, 20(3), 21-34, https://doi.org/10.5610/jaee.20.3_21 link

  6. Kimura, R., H. Miyake, K. Tamura, N. Kato, Y. Morita, M. Iguchi, Y. Tanioka, K. Koketsu, Y. Kuroda, H. Oshima, and K. Satake (2020). Research for contributing to the field of disaster science: A review, J. Disas. Res., 15, 152-164, https://doi.org/10.20965/jdr.2020.p0152 link1, link2

  7. Murotani, S., K. Satake, H. Tsuruoka, H. Miyake, T. Sato, T. Hashimoto, and H. Kanamori (2020). A database of digitized and analog seismograms of historical earthquakes in Japan, Seismol. Res. Lett., 91, 1459-1468, https://doi.org/10.1785/0220190287 link

  8. Kobayashi, H., K. Koketsu, and H. Miyake (2019). Rupture process of the 2018 Hokkaido Eastern Iburi earthquake derived from strong motion and geodetic data, Earth Planets Space, 71:63, https://doi.org/10.1186/s40623-019-1041-7 link

  9. Diao, H., H. Miyake, and K. Koketsu (2018). Near-fault broadband ground-motion simulations of the 2016 Meinong, Taiwan, earthquake, Bull. Seismol. Soc. Am., 108, 3336-3357, doi:10.1785/0120180113. link

  10. 引田智樹・纐纈一起・三宅弘恵 (2018). 観測地震動振幅の偶然的不確実性によるばらつき, 日本地震工学会論文集, 18(2), 15-34, doi:10.5610/jaee.18.2_15. link

  11. Pramatadie, A. M., H. Yamanaka, K. Chimoto, Afnimar, K. Koketsu, M. Sakaue, H. Miyake, I. W. Sengara, and I. A. Sadisun (2017). Microtremor exploration for shallow S-wave velocity structure in Bandung basin, Indonesia, Exploration Geophysics, 48, 401-412, doi:10.1071/EG16043. link

  12. Si, H., K. Koketsu, and H. Miyake (2017). High attenuation rate for shallow, small earthquakes in Japan, Pure Appl. Geophys., 174, 3557-3567, doi:10.1007/s00024-017-1518-x. link

  13. Pitarka, A., R. Graves, K. Irikura, H. Miyake, and A. Rodgers (2017). Performance of Irikura recipe rupture model generator in earthquake ground motion simulations with Graves and Pitarka hybrid approach, Pure Appl. Geophys., 174, 3537-3555, doi:10.1007/s00024-017-1504-3. open access

  14. Poiata, N., H. Miyake, and K. Koketsu (2017). Mechanisms for generation of near-fault ground motion pulses for dip-slip faulting, Pure Appl. Geophys., 174, 3521-3536, doi:10.1007/s00024-017-1540-z. link

  15. Poiata, N., and H. Miyake (2017). Broadband ground motion simulation of the 2004 and 1977 Vrancea, Romania, earthquakes using empirical Green's function method, Pure Appl. Geophys., 174, 3503-3519, doi:10.1007/s00024-017-1605-z. link

  16. Oth, A., H. Miyake, and D. Bindi (2017). On the relation of earthquake stress drop and ground motion variability, J. Geophys. Res. Solid Earth, 122, 5474-5492, doi:10.1002/2017JB014026. open access

  17. Kobayashi, H., K. Koketsu, and H. Miyake (2017). Rupture processes of the 2016 Kumamoto earthquake sequence: Causes for extreme ground motions, Geophys. Res. Lett., 44, 6002-6010, doi:10.1002/2017GL073857. link

  18. Viens, L., M. Denolle, H. Miyake, S. Sakai, and S. Nakagawa (2017). Retrieving impulse response function amplitudes from the ambient seismic field, Geophys. J. Int., 210, 210-222, doi:10.1093/gji/ggx155. link

  19. Irikura, K., K. Miyakoshi, K. Kamae, K. Yoshida, K. Somei, S. Kurahashi, and H. Miyake (2017). Applicability of source scaling relationships for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake, Earth Planets Space, 69:10, doi:10.1186/s40623-016-0586-y. link1, link2

  20. Chimoto, K, H. Yamanaka, S. Tsuno, H. Miyake, and N. Yamada (2016). Estimation of shallow S-wave velocity structure using microtremor array exploration at temporary strong motion observation stations for aftershocks of the 2016 Kumamoto earthquake, Earth Planets Space, 68:206, doi:10.1186/s40623-016-0581-3. link1, link2

  21. Yamanaka, H., K. Chimoto, H. Miyake, S. Tsuno, and N. Yamada (2016). Observation of earthquake ground motion due to aftershocks of the 2016 Kumamoto earthquake in damaged areas, Earth Planets Space, 68:197, doi:10.1186/s40623-016-0574-2. link1, link2

  22. Viens, L., H. Miyake, and K. Koketsu (2016). Simulations of long-period ground motions from a large earthquake using finite rupture modeling and the ambient seismic field, J. Geophys. Res. Solid Earth, 121, 8774-8791, doi:10.1002/2016JB013466. link

  23. Ibrahim, R., H. Si, K. Koketsu, and H. Miyake (2016). Long-period site response in northeastern Japan from ground-motion prediction equations, Bull. Seismol. Soc. Am., 106, 2521-2531, doi:10.1785/0120160076. link1, link2

  24. Iwaki, A., T. Maeda, N. Morikawa, H. Miyake, and H. Fujiwara (2016). Validation of the recipe for broadband ground motion simulation of Japanese crustal earthquakes, Bull. Seismol. Soc. Am., 106, 2214-2232, doi:10.1785/0120150304. link1, link2

  25. Koketsu, K., H. Miyake, Y. Guo, H. Kobayashi, T. Masuda, S. Davuluri, M. Bhattarai, L. B. Adhikari, and S. N. Sapkota (2016). Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake, Scientific Reports, 6, 28536, doi:10.1038/srep28536. link

  26. Guo, Y., K. Koketsu, and H. Miyake (2016). Propagation mechanism of long-period ground motions for offshore earthquakes along the Nankai Trough: Effects of the accretionary wedge, Bull. Seismol. Soc. Am., 106, 1176-1197, doi:10.1785/0120150315. link1, link2

  27. Ibrahim, R., H. Si, K. Koketsu, and H. Miyake (2016). Moment magnitude estimation of large earthquakes based on long-period ground motion prediction equations and pre-assumed fault models, J. Earthq. Tsunami, 10, 1640004, doi:10.1142/S1793431116400042. link

  28. Viens, L., K. Koketsu, H. Miyake, S. Sakai, and S. Nakagawa (2016). Basin-scale Green's functions from the ambient seismic field recorded by MeSO-net stations, J. Geophys. Res. Solid Earth, 121, 2507-2520, doi:10.1002/2016JB012796. link

  29. Kobayashi, H., K. Koketsu, H. Miyake, N. Takai, M. Shigefuji, M. Bhattarai, and S. N. Sapkota (2016). Joint inversion of teleseismic, geodetic, and near-field waveform datasets for rupture process of the 2015 Gorkha, Nepal, earthquake, Earth Planets Space, 68:66, doi:10.1186/s40623-016-0441-1. link1, link2

  30. 津野靖士・山中浩明・翠川三郎・地元孝輔・宮腰寛之・佐口浩一郎・酒井慎一・三宅弘恵・纐纈一起 (2016). 2011年東北地方太平洋沖地震の東京湾西岸部に於ける周期2〜3秒の強震動生成要因, 日本地震工学会論文集, 16(4), 35-51, doi:10.5610/jaee.16.4_35. link

  31. 三宅弘恵・浅野公之・纐纈一起・岩田知孝 (2016). 2011年東北地方太平洋沖地震の強震記録を用いた震源モデルの概要, 日本地震工学会論文集, 16(4), 12-21, doi:10.5610/jaee.16.4_12. link

  32. 司宏俊・纐纈一起・三宅弘恵 (2016). プレート境界巨大地震の地震動距離減衰特性−伝播特性に着目した検討−, 日本地震工学会論文集, 16(1), 96-105, doi:10.5610/jaee.16.1_96. link

  33. Ibrahim, R., H. Si, K. Koketsu, and H. Miyake (2016). Long-period ground-motion prediction equations for moment magnitude estimation of large earthquakes in Japan, Bull. Seismol. Soc. Am., 106, 54-72, doi:10.1785/0120140244. link1, link2

  34. Tran, M. T., V. Vi, H. Miyake, and K. Irikura (2015). Simulated ground motion of the earthquake on October 22nd, 2012, M4.6 at Song Tranh 2 dam area, Vietnam Journal of Earth Sciences, 37, 241-251, doi:10.15625/0866-7187/37/3/7798 (in Vietnamese with English abstract). link

  35. Viens, L., H. Miyake, and K. Koketsu (2015). Long-period ground motion simulation of a subduction earthquake using the offshore-onshore ambient seismic field, Geophys. Res. Lett., 42, 5282-5289, doi:10.1002/2015GL064265. link

  36. Yagoda-Biran G., J. G. Anderson, H. Miyake, and K. Koketsu (2015). Between-event variance for large repeating earthquakes, Bull. Seismol. Soc. Am., 105, 2023-2040, doi:10.1785/0120140196. link1, link2

  37. Ishise, M., H. Miyake, and K. Koketsu (2015). Dual subduction tectonics and plate dynamics of central Japan shown by three-dimensional P-wave anisotropic structure, Phys. Earth Planet. Inter., 244, 49-68, doi:10.1016/j.pepi.2015.03.008. link

  38. Wen Y.-Y., H. Miyake, Y.-T. Yen, K. Irikura, and K.-E. Ching (2014). Rupture directivity effect and stress heterogeneity of the 2013 Nantou blind-thrust earthquakes, Taiwan, Bull. Seismol. Soc. Am., 104, 2933-2942, doi:10.1785/0120140109. link1, link2

  39. Sugan, M., A. Kato, H. Miyake, S. Nakagawa, and A. Vuan (2014). The preparatory phase of the 2009 Mw 6.3 L’Aquila earthquake by improving the detection capability of low-magnitude foreshocks, Geophys. Res. Lett., 41, 6137-6144, doi:10.1002/2014GL061199. open access

  40. Si, H., K. Koketsu, H. Miyake, and X. Li (2014). Empirical evaluation of ground motion for the Wenchuan and Lushan earthquakes, Earthquake Engineering and Engineering Dynamics, 34(4), 93-100, doi:10.13197/j.eeev.2014.04.93.sihj.012 (in Chinese with English abstract). link1, link2

  41. Satriano, C., V. Dionicio, H. Miyake, N. Uchida, J.-P. Vilotte, and P. Bernard (2014). Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: Lessons from the Mw 9.0, 2011 Tohoku earthquake, Earth Planet. Sci. Lett., 403, 287-298, doi:10.1016/j.epsl.2014.06.037. link

  42. Brenguier, F., M. Campillo, T. Takeda, Y. Aoki, N. M. Shapiro, X. Briand, K. Emoto, and H. Miyake (2014). Mapping pressurized volcanic fluids from induced crustal seismic velocity drops, Science, 345, 80-82, doi:10.1126/science.1254073. link, perspective

  43. 早川崇・津田健一・三宅弘恵・纐纈一起 (2014). 関東平野における周期2〜4秒のサイト特性分布, 日本建築学会構造系論文集, 79(701), 895-904, doi:10.3130/aijs.79.895. link

  44. Ibrahim, R., H. Si, K. Koketsu, and H. Miyake (2014). Empirical spectral acceleration amplification in the Iwate-Miyagi and Niigata regions, Japan, inferred by a spectral ratio method using ground motion prediction equations, Bull. Seismol. Soc. Am., 104, 1410-1429, doi:10.1785/0120130124. link1, link2

  45. Denolle, M., H. Miyake, S. Nakagawa, N. Hirata, and G. C. Beroza (2014). Long-period seismic amplification in the Kanto Basin from the ambient seismic field, Geophys. Res. Lett., 41, 2319-2325, doi:10.1002/2014GL059425. link

  46. Sadeghi, H., H. Miyake, and A. Riahi (2013). Strong ground motion simulation of the 2003 Bam, Iran, earthquake using the empirical Green's function method, J. Seismol., 17, 297-312, doi:10.1007/s10950-012-9317-4. link

  47. Poiata, N., K. Koketsu, A. Vuan, and H. Miyake (2012). Low-frequency and broad-band source models for the 2009 L'Aquila, Italy, earthquake, Geophys. J. Int., 191, 224-242, doi:10.1111/j.1365-246X.2012.05602.x. link

  48. Poiata, N., H. Miyake, K. Koketsu, and K. Hikima (2012). Strong-motion and teleseismic waveform inversions for the source process of the 2003 Bam, Iran, earthquake, Bull. Seismol. Soc. Am., 102, 1477-1496, doi:10.1785/0120110198, link1, link2

  49. Roten, D., H. Miyake, and K. Koketsu (2012). A Rayleigh wave back-projection method applied to the 2011 Tohoku earthquake, Geophys. Res. Lett., 39, L02302, doi:10.1029/2011GL050183. link

  50. 木村武志・竹本帝人・塚越大・坂上実・三宅弘恵・纐纈一起 (2011). スペクトルインバージョンに基づく2008年岩手・宮城内陸地震の余震の震源特性と震源域のサイト増幅特性, 日本地震工学会論文集, 11(5), 28-40, doi:10.5610/jaee.11.5_28. link1, link2

  51. Koketsu, K., Y. Yokota, N. Nishimura, Y. Yagi, S. Miyazaki, K. Satake, Y. Fujii, H. Miyake, Y. Yamanaka, S. Sakai, and T. Okada (2011). A unified source model for the 2011 Tohoku earthquake, Earth Planet. Sci. Lett., 310, 480-487, doi:10.1016/j.epsl.2011.09.009. link

  52. Lavallée, D., H. Miyake, and K. Koketsu (2011). Stochastic model of a subduction-zone earthquake: Sources and ground motions for the 2003 Tokachi-oki, Japan, earthquake, Bull. Seismol. Soc. Am., 101, 1807-1821, doi:10.1785/0120090318. link1, link2

  53. Irikura, K., and H. Miyake (2011). Recipe for predicting strong ground motion from crustal earthquake scenarios, Pure Appl. Geophys., 168, 85-104, doi:10.1007/s00024-010-0150-9. open access

  54. Ghasemi, H., Y. Fukushima, K. Koketsu, H. Miyake, Z. Wang, and J. G. Anderson (2010). Ground-motion simulation for the 2008 Wenchuan, China, earthquake using the stochastic finite-fault method, Bull. Seismol. Soc. Am., 100, 2476-2490, doi:10.1785/0120090258. link1, link2

  55. Kimura, T., K. Koketsu, H. Miyake, C. Wu, and T. Miyatake (2010). Dynamic source modeling of the 1978 and 2005 Miyagi-oki earthquakes: Interpretation of fracture energy, J. Geophys. Res., 115, B08302, doi:10.1029/2009JB006758. link

  56. Poiata, N., K. Koketsu, and H. Miyake (2010). Source processes of the 2009 Irian Jaya, Indonesia, earthquake doublet, Earth Planets Space, 62, 475-481, doi:10.5047/eps.2010.02.008. link1, link2, link3, link4

  57. Miyake, H., K. Koketsu, K. Hikima, M. Shinohara, and T. Kanazawa (2010). Source fault of the 2007 Chuetsu-oki, Japan, earthquake, Bull. Seismol. Soc. Am., 100, 384-391, doi:10.1785/0120090126. link1, link2

  58. 纐纈一起・三宅弘恵 (2009). 地下構造モデルと強震動シミュレーション, 地震, 61, S441-S453, doi:10.4294/zisin.61.441. link

  59. Koketsu, K., H. Miyake, Afnimar, and Y. Tanaka (2009). A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan, Tectonophysics, 472, 290-300, doi:10.1016/j.tecto.2008.05.037. link

  60. Ishise, M., K. Koketsu, and H. Miyake (2009). Slab segmentation revealed by anisotropic P-wave tomography, Geophys. Res. Lett., 36, L08308, doi:10.1029/2009GL037749. link

  61. 宮武隆・三宅弘恵・木村武志・隅谷謙一 (2008). 短周期地震波の成因についての考察, 地震, 61, 91-97, doi:10.4294/zisin.61.91. link

  62. Murotani, S., H. Miyake, and K. Koketsu (2008). Scaling of characterized slip models for plate-boundary earthquakes, Earth Planets Space, 60, 987-991, doi:10.1186/BF03352855. link1, link2, link3

  63. Wu, C., K. Koketsu, and H. Miyake (2008). Source processes of the 1978 and 2005 Miyagi-oki, Japan, earthquakes: Repeated rupture of asperities over successive large earthquakes, J. Geophys. Res., 113, B08316, doi:10.1029/2007JB005189. link

  64. Dalguer, L. A., H. Miyake, S. M. Day, and K. Irikura (2008). Surface rupturing and buried dynamic-rupture models calibrated with statistical observations of past earthquakes, Bull. Seismol. Soc. Am., 98, 1147-1161, doi:10.1785/0120070134. link1, link2

  65. Ikegami, Y., K. Koketsu, T. Kimura, and H. Miyake (2008). Finite-element simulations of long-period ground motions: Japanese subduction-zone earthquakes and the 1906 San Francisco earthquake, J. Seismol., 12, 161-172, doi:10.1007/s10950-008-9091-5. link

  66. Koketsu, K., and H. Miyake (2008). A seismological overview of long-period ground motion, J. Seismol., 12, 133-143, doi:10.1007/s10950-007-9080-0. link

  67. Miyake, H., Y. Tanaka, M. Sakaue, K. Koketsu, and Y. Ishigaki (2006). Empirical Green's function simulation of broadband ground motions on Genkai Island during the 2005 West Off Fukuoka Prefecture earthquake, Earth Planets Space, 58, 1637-1642, doi:10.1186/BF03352675. link1, link2, link3, link4

  68. Koketsu, K., and H. Miyake (2006). Earthquake observation and strong motion seismology in Japan from 1975 to 2005, J. Disas. Res., 1, 407-414, doi:10.20965/jdr.2006.p0407. link

  69. Mai, P. M., P. Somerville, A. Pitarka, L. Dalguer, S. Song, G. Beroza, H. Miyake, and K. Irikura (2006). On scaling of fracture energy and stress drop in dynamic rupture models: Consequences for near-source ground-motions, Earthquakes: Radiated Energy and the Physics of Faulting, AGU Geophysical Monograph Series, 170, 283-294, doi:10.1029/170GM28. link

  70. Miyake, H., and K. Koketsu (2005). Long-period ground motions from a large offshore earthquake: The case of the 2004 off the Kii peninsula earthquake, Japan, Earth Planets Space, 57, 203-207, doi:10.1186/BF03351816. link1, link2, link3, link4

  71. 岩田知孝・三宅弘恵 (2004). 強震動予測レシピに基づくシナリオ地震による強震動シミュレーション ―琵琶湖西岸断層系北部を起震断層として―, 自然災害科学, 23, 259-271. link

  72. Miyake, H., T. Iwata, and K. Irikura (2003). Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area, Bull. Seismol. Soc. Am., 93, 2531-2545, doi:10.1785/0120020183. link1, link2

  73. 入倉孝次郎・三宅弘恵 (2001). シナリオ地震の強震動予測, 地学雑誌, 110, 849-875, doi:10.5026/jgeography.110.6_849. link1, link2

  74. Miyake, H., T. Iwata, and K. Irikura (2001). Estimation of rupture propagation direction and strong motion generation area from azimuth and distance dependence of source amplitude spectra, Geophys. Res. Lett., 28(14), 2727-2730, doi:10.1029/2000GL011669. link

  75. 三宅弘恵・岩田知孝・入倉孝次郎 (1999). 経験的グリーン関数法を用いた1997年3月26日(MJMA 6.5) 及び5月13日(MJMA 6.3) 鹿児島県北西部地震の強震動シミュレーションと震源モデル, 地震, 51, 431-442. link1, link2

論文・論説
  1. 三宅弘恵 (2020). 2019年カリフォルニア・リッジクレスト地震 , 地震ジャーナル, 69, 25-30. link

  2. Koketsu, K., H. Miyake, Y. Guo, H. Kobayashi, T. Masuda, S. Davuluri, M. Bhattarai, L. B. Adhikari, and S. N. Sapkota (2020). Author Correction: Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake. Sci Rep 10, 7224. https://doi.org/10.1038/s41598-020-63939-z link

  3. Miyake, H., S. N. Sapkota, B. N. Upreti, L. Bollinger, T. Kobayashi, and H. Takenaka (2017). Special issue "The 2015 Gorkha, Nepal, earthquake and Himalayan studies: First results", Earth Planets Space, 69:12, https://dx.doi.org/10.1186/s40623-016-0597-8 link1, link2

  4. 纐纈一起・三宅弘恵 (2010). 長周期地震動予測地図, 日本地震工学会誌, 11, 2-7. link

  5. Wu, C., K. Koketsu, and H. Miyake (2009). Correction to 'Source processes of the 1978 and 2005 Miyagi-oki, Japan, earthquakes: Repeated rupture of asperities over successive large earthquakes', J. Geophys. Res., 114, B04302, doi:10.1029/2009JB006419. link

  6. Tanaka, Y., K. Koketsu, H. Yamanaka, T. Uetake, T. Tanada, S. Kawasaki, and H. Miyake (2008). The 2002 seismic refraction/reflection surveys in the Kozu-Matsuda fault zone and Ashigara valley, Bull. Earthq. Res. Inst. Univ. Tokyo, 83, 251-263. link1, link2

  7. 纐纈一起・三宅弘恵 (2008). 2007年新潟県中越沖地震の震源断層面と柏崎刈羽の強震動, 地震ジャーナル, 45, 27-35. link

  8. 石瀬素子・纐纈一起・三宅弘恵・小田仁 (2008). 日本列島の3次元P波異方性速度構造−東北地方を中心に−, 月刊地球, 30, 18-25.

  9. 三宅弘恵・纐纈一起・田中康久・坂上実・石垣祐三 (2007). 福岡県西方沖地震・玄界島の強震動の再現, 月刊地球, 29, 111-115.

  10. Koketsu, K., and H. Miyake (2006). Future earthquakes and their strong ground motions in the Tokyo metropolitan area, Bull. Earthq. Res. Inst. Univ. Tokyo, 81, 353-359. link1, link2

  11. Miyake, H., K. Koketsu, R. Kobayashi, Y. Tanaka, and Y. Ikegami (2006). Ground motion validation of the great 1923 Kanto earthquake using source model along the new geometry of the Philippine sea slab and integrated 3D velocity structure model in the Tokyo metropolitan area, Bull. Earthq. Res. Inst. Univ. Tokyo, 81, 267-272. link1, link2

  12. 三宅弘恵・室谷智子・纐纈一起 (2006). プレート境界地震のアスペリティのスケーリング則, 月刊地球, 号外55, 86-91.

  13. 纐纈一起・三宅弘恵 (2006). 2003年十勝沖地震に対する総合的研究の地震学的成果, 月刊地球, 号外55, 46-54.

  14. 岩田知孝・三宅弘恵 (2003). シナリオ地震に基づく強震動予測の現状, 自然災害科学, 22, 229-231. link

  15. 入倉孝次郎・三宅弘恵・岩田知孝・釜江克宏・川辺秀憲・Luis Angel Dalguer (2003). 将来の大地震による強震動を予測するためのレシピ, 京都大学防災研究所年報, 46B, 105-120. PDF

  16. 入倉孝次郎・三宅弘恵 (2002). 予測のための震源のモデル化, 月刊地球, 号外37, 62-77.

分担執筆著書
  1. Irikura, K., and H. Miyake. Earthquake strong motion: Prediction for engineering applications, Encyclopedia of Complexity and Systems Science, Springer, in review. link

  2. Miyake, H., K. Irikura (2018). Characterized source modeling of crustal earthquakes for broadband ground motion prediction IAEA-TECDOC-CD-1833, ISBN 9789201589170. link

  3. 土木学会 (2017). 2016年熊本地震被害調査報告書, 514 pp. link

  4. 高井伸雄・重藤迪子・三宅弘恵・Subeg Bijukchhen・一柳昌義・笹谷努 (2016). 地震の概要, 2015年ネパール・ゴルカ地震災害調査報告書, 日本建築学会, 4-19. link

  5. 日本建築学会 (2016). 地盤震動と強震動予測 −基本を学ぶための重要項目−, 349 pp. link

  6. Poiata, N., and H. Miyake (2013). Empirical Green functions method - application for Romania, Seismic motions: Examples of application in earthquake engineering, A. Aldea (Editor), Matrix Rom, 147-157, ISBN 9789737559678. link

  7. Miyake, H., and N. Poiata (2013). Method for simulation, Seismic motions: Examples of application in earthquake engineering, A. Aldea (Editor), Matrix Rom, 143-146, ISBN 9789737559678. link

  8. Irikura, K., and H. Miyake (2011). Lecture Note on Strong Motion Seismology, IISEE-UNESCO Lecture Notes Archive, S1-100-2010, 74 pp. link

  9. 纐纈一起・三宅弘恵 (2010). 長周期地震動の研究史, 地震災害マネジメント, (社)土木学会地震工学委員会地震防災技術普及小委員会編, 525-532. link

学位論文・修士論文
国際会議 Proceedings

国内会議 Proceedings
報告・記事・コラム
国際学会発表

国内学会発表

強震動予測
地震動 被害地震 震源 構造 観測