nature café As the 21st Century progresses, elementary particles and remote sensing technologies have drawn worldwide attention as a desirable technique for visualizing the Earth due to their global-scale but finer resolving power than possible with the conventional techniques. The title of this conference, “MUOGRAPHERS” stands for Muon, Optics, Geoneutrino, Radar, and Photonics for Earth Studies, and signifying its objective to the non-existing spatio-temporal scale Earth visualization with these technologies. At the opening symposium on June 8th, Horizon 2020, the biggest EU Research and Innovation Program, will be explained by Hungarian National Research, Development and Innovation Office (NRDIO). At the international symposium on June 9, we will give an overview of the present state of earth visualization technologies and discuss their future prospects through key-note lectures by the world’s leading scientists and science writer, Nature Café, and the poster session. Both English and Japanese are used for their talks, but audiences can choose their own language via the simultaneous translation service. At the international workshop on June 10, more technical details are discussed based on 20 short lectures given by researchers in the front lines.

21世紀にはいり、素粒子やリモートセンシング技術が従来の観測限界を超える夢の地球観測技術として、世界中の注目を集めています。MUOGRAPHERSMuon, Optics, Geoneutrino, Radar, and Photonics for Earth Studiesの略であり、従来の技術ではカバーできなかった時空間スケールで地球を可視化することを目的としています。68日の開会シンポジウムは欧州科学技術基本計画ホライゾン2020へのハンガリー共和国の取り組み、ハンガリー科学アカデミーWigner物理学研究所の取り組み、そしてそのカギとなる素粒子物理学と地球観測の学際研究に関する基調講演が予定されています。69日の本会議では世界をリードする4名の科学者Peter LevaiJon Gluyas、井口俊夫、 JOSAPHAT Tetuko Sri Sumantyoによる素粒子や光技術を利用した可視化及び、情報通信に関する基調講演、サイエンス作家竹内薫による講演会、Nature Caféでのパネルディスカッション、そして、ポスター発表を通して、地球の可視化技術の未来像を概観します。使用言語は日英2か国語で、同時通訳サービスを通して、参加者はいずれかの言語を選択できます。610日には素粒子物理学、リモートセンシング分野の国内外で活躍する第一線の研究者による20件程度の講演を軸とした、より掘り下げた国際ワークショップを開催します。使用言語は英語です。

What's New


Hiroyuki Tanaka, Professor of High Energy Particle Geophysics, the University of Tokyo
htA new window to visualize the internal structure of gigantic objects (such as volcanoes) has been realized with muography, a recently developed particle imaging technique. The E.P. George’s experiment in 1955 to measure the rock overburden using muons was the first attempt and 12 years later the L.W. Alvarez’s target of the muographic survey was an Egyptian pyramid. However, the first successful imaging of the volcano's interior in 2006 greatly accelerated development, and now current and future applications of this technique include: monitoring magma motion, temporal variations in glacier geometry, and carbon capture and storage, etc. This year's MUOGRAPHERS assembly was successfully coordinated with the collaboration of the University of Sheffield, Durham University, Wigner Research Centre for Physics of the Hungary Academy of Science, Tohoku University, Osaka University and the University of Tokyo. I hope we may continue to have fruitful discussions regarding the contributions that future technological developments will have on muography.

                                                                                                 Hiroyuki Tanaka, Professor of High Energy Particle Geophysics
Lee Thompson, Professor of Experimental Particle Physics, University of Sheffield
thompsonOur joint collaborative activities have successfully led to the initiation of two muography projects in UK and Japan, respectively targeting monitoring in carbon capture and storage and nuclear waste in the UK and volcanoes in Japan. A number of research results have been published to date. In 2015, we summarized our cooperative activities in presentations and activities at MUOGRAPHERS 2015 and the 16th Nature Café.


                                                                                                  Lee Thompson, Professor of Experimental Particle Physics







Earthquake Research Institute of The University of Tokyo/東京大学地震研究所


Graduate School of Science, The University of Tokyo/東京大学大学院理学系研究科

Graduate School of Engineering, Osaka University/大阪大学大学院工学研究科

Research Center for Neutrino Science, Tohoku University/東北大学ニュートリノ科学センター

Durham University/ダラム大学

University of Sheffield/シェフィールド大学

Wigner Research Center for Physics of the Hungary Academy of Science/ハンガリー科学アカデミーウィグナー物理学研究センター


Embassy of Hungary in Tokyo, Japan/駐日ハンガリー大使館



Photographic image of Showa-Shinzan volcano (from Wikipedia)/昭和新山火山の写真
Muographic image of Showa-Shinzan volcano (© Hiroyuki Tanaka)/昭和新山火山のミュオグラフィ透視像
Photographic image of the thunder storm cloud (from Wikipedia)/雷雨を引き起こす積乱雲の写真
Phased-array radar tomographic image of the thunder storm cloud (© Tomoo Ushio)/積乱雲のフェーズドアレイレーダー断層画像
Photographic image of the Japanese byobu painting/柳橋水車図屏風の写真(東京国立博物館蔵)
Teraherz radiographic image of the Japanese byobu painting (© NICT)/柳橋水車図屏風のテラヘルツ波透視像
Satellite photograph of Sidoarjo mud flow (© Josaphat Tetuko Sri Sumantyo)/シドアルジョの泥火山の衛星写真
ASTER thermographic image of Sidoarjo mud flow (© Josaphat Tetuko Sri Sumantyo)/シドアルジョの泥火山のASTERサーモグラフィ像
Photographic image of the Pyramid of the Sun, Teotihuacan(from Wikipedia)/テオティワカン、太陽のピラミッドの写真
Muographic image of the Pyramid of the Sun, Teotihuacan(Agular et al. ICRC 2013)/テオティワカン、太陽のピラミッドのミュオグラフィ透視像
Photographic image of the Earth (from Wikipedia)/地球の写真
Geoneturino detected at KamLAND (© RCNS)/KamLANDで検出された地球ニュートリノ