Friday Seminar (19 April 2024) **at 3 pm** Zachary Ross (Caltech)

Title: Earthquake swarms and magma transport in the mantle sill complex beneath Hawai‘i

Abstract:

The deep magmatic architecture of the Hawaiian volcanic system is central to understanding the transport of magma from the upper mantle to the individual volcanoes. We leverage advances in earthquake monitoring with deep learning algorithms to image the structures underlying a major mantle earthquake swarm of nearly 200,000 events that rapidly accelerated after the 2018 Kīlauea caldera collapse. At depths of 36 to 43 kilometers, we resolve a 15-km-long collection of near-horizontal sheeted structures that we identify as a sill complex. These sills connect to the lower depths of Kīlauea’s plumbing by a 25-kilometers-long belt of seismicity. These findings implicate the mantle sill complex as a nexus for magma transport beneath Hawai‘i and furthermore indicate widespread magmatic connectivity in the volcanic system. The sill complex further presents an opportunity to elucidate interactions between stress and magma transport processes in the mantle. We invert for full moment tensors of sill earthquakes and identify predominantly shear mechanisms with persistent tensile faulting components. Slip occurs in-plane with the sill structures. Pressure axes are radially oriented about a point near Mauna Loa, consistent with a stress field generated by a flexural load. Together, these observations suggest that magma flux through the sill structures generates seismicity by increasing pore pressure and promoting slip. Our results suggest that stress changes in mantle structures may enable fluctuations in magma supply rates to the surface over short timescales.